Kako najdemo X in Y prestreze kvadratnih enačb

Posted on
Avtor: Randy Alexander
Datum Ustvarjanja: 1 April 2021
Datum Posodobitve: 18 November 2024
Anonim
Statistical Programming with R by Connor Harris
Video.: Statistical Programming with R by Connor Harris

Vsebina

Kvadratne enačbe tvorijo parabolo, ko se grabijo. Parabola se lahko odpre navzgor ali navzdol in se lahko premika navzgor ali navzdol ali vodoravno, odvisno od konstant enačbe, ko jo napišete v obliki y = os kvadrata + bx + c. Spremenljivki y in x sta zgrabljeni na osi y in x, a, b in c so konstante. Glede na to, kako visoko se parabola nahaja na osi y, ima lahko enačba nič, en ali dva x-prestrezka, vendar bo vedno imela en y-prestrezanje.

    Preverite, ali je vaša enačba kvadratna enačba, tako da jo napišete v obliki y = os kvadrata + bx + c, kjer so a, b in c konstante in a ni enako nič. Poiščite y-prestreznik za enačbo tako, da pustimo x enako nič. Enačba postane y = 0x kvadrat + 0x + c ali y = c. Upoštevajte, da bo y-prestrezanje kvadratne enačbe, zapisano v obliki y = kvadrat kvadrata + bx = c, vedno konstanta c.

    Če želite najti x-prestrezke kvadratne enačbe, pustite y = 0. Zapišite novo os enačbe v kvadrat + bx + c = 0 in kvadratno formulo, ki daje raztopino kot x = -b plus ali minus kvadratni koren ( b na kvadrat - 4ac), vse deljeno z 2a. Kvadratna formula lahko daje nič, eno ali dve rešitvi.

    Rešimo enačbo 2x na kvadrat - 8x + 7 = 0 in poiščemo dva x-prestrezka. Konstante postavite v kvadratno formulo, da dobite - (- 8) plus ali minus kvadratni koren (-8 kvadrata - 4 krat 2 krat 7), vsi deljeni z 2 krat 2. Izračunajte vrednosti, da dobite 8 +/- kvadrat root (64 - 56), vse deljeno s 4. Poenostavite izračun, da dobite (8 +/- 2.8) / 4. Odgovor izračunajte kot 2.7 ali 1.3. Upoštevajte, da to predstavlja parabolo, ki prečka os x pri 1.3 =, ko se zmanjša na minimum in nato ponovno prečka pri x = 2.7, ko se poveča.

    Preučite kvadratno formulo in upoštevajte, da obstajata dve rešitvi zaradi izraza pod kvadratnim korenom. Rešite enačbo x na kvadrat + 2x +1 = 0 in poiščite x-prestrezke. Izračunajte izraz pod kvadratnim korenom kvadratne formule, kvadratnega korena 2 kvadrata - 4 krat 1 krat 1, da dobite nič. Izračunajte preostali del kvadratne formule, da dobite -2/2 = -1, in upoštevajte, da če ima izraz pod kvadratnim korenom kvadratne formule nič, ima kvadratna enačba samo en x-prestreznik, kjer se parabola samo dotakne x x os.

    Iz kvadratne formule upoštevajte, da če je izraz pod kvadratnim korenom negativen, formula nima rešitve in ustrezna kvadratna enačba ne bo imela x-prestrezkov. V enačbi iz prejšnjega primera povečajte c na 2. Rešite enačbo 2x na kvadrat + x + 2 = 0, da dobite x-prestreze. S kvadratno formulo dobite koren -2 +/- kvadrat (2 kvadrata - 4 krat 1 krat 2), vse deljeno z 2 krat 1. Poenostavite, da dobite -2 +/- kvadratni koren iz (-4), vsi razdeljeni z 2. Upoštevajte, da kvadratni koren -4 nima prave rešitve in tako kvadratna formula kaže, da ni x-prestrezkov. Grafirajte parabolo, da vidite, da je naraščajoč c dvignil parabolo nad os x, tako da se parabola ne dotika več ali seka.

    Nasveti

    Opozorila