Kako najti kote in strani trikotnika

Posted on
Avtor: Monica Porter
Datum Ustvarjanja: 22 Pohod 2021
Datum Posodobitve: 18 November 2024
Anonim
Načrtovanje kotov 60, 30 in 15 stopinj s šestilom in ravnilom.
Video.: Načrtovanje kotov 60, 30 in 15 stopinj s šestilom in ravnilom.

Številni matematični razredi in standardizirani testi, kot sta ACT in SAT, bodo morali najti kote in stranice trikotnika. Trikotnike lahko razvrstimo v desne (imajo 90-stopinjski kot) ali poševne (ne-desne); kot enakostranični (3 enake strani in 3 enaki koti), izoscele (2 enaki strani, 2 enaka kota) ali skalena (3 različne strani, 3 različni koti); in podobno (2 ali več trikotnikov, ki imajo enake kote in so vse strani sorazmerne). Strategija, ki jo uporabljate za iskanje kotov in strani, je odvisna od vrste trikotnika in števila strani in kotov, ki ste jih dobili.

    Narišite in označite svoj trikotnik glede na podatke, ki ste jih dobili.

    Pred trigonometrijo preizkusite geometrijo. Medtem ko lahko uporabite trig za iskanje vseh strani in kota, je geometrija običajno hitrejša in enostavnejša. Najprej se spomnite, da je vsota kotov katerega koli trikotnika vedno 180 stopinj. Če poznate 2 kota trikotnika, lahko vedno odštejete njuno vsoto od 180, da najdete tretji kot. Vsak kot enakostraničnega trikotnika je vedno 60 stopinj. Za izoscele trikotnike je pomembno vedeti, da se obe enaki strani spopadata z enakima kotoma (torej če je kot A = kot B, stran A = stran B). Za prave trikotnike si zapomnite pitagorejski teorem (vsota kvadratov dveh krajših strani je enaka kvadratu hipotenuze ali a² + b² = c²). Za podobne trikotnike ne pozabite, da so stranice podobnih trikotnikov sorazmerne in jih razrešite z razmerji (na primer razmerje strani prvega trikotnika a in strani b bo enako strani drugega in trikotnika a in strani b).

    S trigonometričnimi razmerji poiščite manjkajoče kote desnih trikotnikov. Tri osnovna razmerja trig so sinus = nasprotno / hipotenuza; Kosin = sosednja / hipotenuza; in Tangent = Nasprotno / sosednje (pogosto se jih spomnimo z mnemografsko napravo „SohCahToa“). Rešite za manjkajoči kot s pomočjo arcina, arkosa ali arctan funkcije vašega kalkulatorja (ponavadi je označen kot "sin-1", "cos-1" in "tan-1"). Na primer, da bi našli kota A glede na to, da je stran a = 3 in stran b = 4, saj je tanA = 3/4, v svoj kalkulator vnesite arctan (3/4), da dobite kot A.

    Za iskanje manjkajočih kotov in strani poševnih (nepravih) trikotnikov uporabite zakon kozmetike in / ali zakon kosil. Če boste dobili 3 strani in 0 kotov, ali če imate dve strani in kot nasproti manjkajoči strani, morate uporabiti zakon kozinsov (c² = a² + b² - 2ab cosC). Zakon Sines (a / sinA = b / sinB = c / sinC) je mogoče uporabiti kadarkoli, ko poznate dolžino ene strani in njen nasprotni kot ter eno drugo stran ali kot.

    Preveri svoje odgovore. Ne pozabite, da se bo najkrajša stran soočila s najkrajšim kotom, najdaljša stran pa z najdaljšim kotom (torej če je stran a <stran b <stran c, potem je kot A <kot B <kot C). Drug način preverjanja rezultatov je teorem o neenakosti trikotnika, ki navaja, da mora biti katera koli stran trikotnika večja od razlike drugih dveh strani in manjša od vsote drugih dveh strani.